Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 14(14): 2872-2881, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-33826792

RESUMO

Hydrogen, produced by water splitting, has been proposed as one of the main green energy vectors of the future if produced from renewable energy sources. However, to substitute fossil fuels, large amounts of pure water are necessary, scarce in many world regions. In this work, we fabricate efficient and earth-abundant electrodes, study the challenges of using real seawater, and propose an electrode regeneration method to face undesired salt deposition. Ni-Mo-Fe trimetallic electrocatalyst is deposited on non-expensive graphitic carbon felts both for hydrogen (HER) and oxygen evolution reactions (OER) in seawater and alkaline seawater. Cl- pitting and the chlorine oxidation reaction are suppressed on these substrates and alkalinized electrolyte. Precipitations on the electrodes, mainly CaCO3 , originating from seawater-dissolved components have been studied, and a simple regeneration technique is proposed to rapidly dissolve undesired deposited CaCO3 in acidified seawater. Under alkaline conditions, Ni-Mo-Fe-based catalyst is found to reconfigure, under cathodic bias, into Ni-Mo-Fe alloy with a cubic crystalline structure and Ni : Fe(OH)2 redeposits whereas, under anodic bias, it is transformed into a follicular Ni:FeOOH structure. High productivities over 300 mA cm-2 and voltages down to 1.59 V@10 mA cm-2 for the overall water splitting reaction have been shown, and electrodes are found stable for over 24 h without decay in alkaline seawater conditions and with energy efficiency higher than 61.5 % which makes seawater splitting promising and economically feasible.

2.
Beilstein J Nanotechnol ; 10: 1380-1390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355106

RESUMO

This work is an investigation of the properties of semiconductor materials based on metal oxides, their catalytic properties, and their application as gas sensors, which were shown to exhibit high sensitivity, stability, and selectivity to target gases. The aim of this work is the comparison of gas sensing properties of tin dioxide in the form of individual nanowires and nanopowders obtained by sol-gel synthesis. This comparison is necessary because the traditional synthesis procedures of small particle, metal oxide materials seem to be approaching their limit. Because of this, there is increasing interest in the fabrication of functional materials based on nanowires, i.e., quasi-one-dimensional objects. In this work, nanocrystalline tin dioxide samples with different morphology were synthesized. The gas-transport method was used for the fabrication of well-faceted wire-like crystals with diameters ranging between 15-100 nm. The sol-gel method allowed us to obtain fragile gels from powders with grain sizes of about 5 nm. By means of X-ray photoelectron spectroscopy (XPS) it was proven that the nanowires contain considerably smaller amounts of hydroxy groups compared to the nanopowders. This leads to a decrease in the parasitic sensitivity of the sensing materials to humidity. In addition, we demonstrated that the nanowires are characterized by a nearly single-crystalline structure, ensuring higher stability of the sensor response due to the unlikelihood of sample recrystallization. The results from the ammonia detection experiments showed that the ratio of the sensor response to the surface area exhibits similar values for both the individual nanowire and nanopowders-based sensor materials.

3.
ACS Appl Mater Interfaces ; 11(33): 29725-29735, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31347833

RESUMO

Around 100 nm thick TiO2 layers deposited by atomic layer deposition (ALD) have been investigated as anticorrosion protective films for silicon-based photoanodes decorated with 5 nm NiFe catalyst in highly alkaline electrolyte. Completely amorphous layers presented high resistivity; meanwhile, the ones synthesized at 300 °C, having a fully anatase crystalline TiO2 structure, introduced insignificant resistance, showing direct correlation between crystallization degree and electrical conductivity. The conductivity through crystalline TiO2 layers has been found not to be homogeneous, presenting preferential conduction paths attributed to grain boundaries and defects within the crystalline structure. A correlation between the conductivity atomic force microscopy measurements and grain interstitials can be seen, supported by high-resolution transmission electron microscopy cross-sectional images presenting defective regions in crystalline TiO2 grains. It was found that the conduction mechanism goes through the injection of electrons coming from water oxidation from the electrocatalyst into the TiO2 conduction band. Then, electrons are transported to the Si/SiOx/TiO2 interface where electrons recombine with holes given by the p+n-Si junction. No evidences of intra-band-gap states in TiO2 responsible of conductivity have been detected. Stability measurements of fully crystalline samples over 480 h in anodic polarization show a continuous current decay. Electrochemical impedance spectroscopy allows to identify that the main cause of deactivation is associated with the loss of TiO2 electrical conductivity, corresponding to a self-passivation mechanism. This is proposed to reflect the effect of OH- ions diffusing in the TiO2 structure in anodic conditions by the electric field. This fact proves that a modification takes place in the defective zone of the layer, blocking the ability to transfer electrical charge through the layer. According to this mechanism, a regeneration of the degradation process is demonstrated possible based on ultraviolet illumination, which contributes to change the occupancy of TiO2 electronic states and to recover the defective zone's conductivity. These findings confirm the connection between the structural properties of the ALD-deposited polycrystalline layer and the degradation mechanisms and thus highlight main concerns toward fabricating long-lasting metal-oxide protective layers for frontal illuminated photoelectrodes.

4.
ACS Appl Mater Interfaces ; 9(46): 40290-40297, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29094924

RESUMO

CoxNi1-xTiO3 systems evaluated as photo- and electrocatalytic materials for oxygen evolution reaction (OER) from water have been studied. These materials have shown promising properties for this half-reaction both under (unbiased) visible-light photocatalytic approach in the presence of an electron scavenger and as electrocatalysts in dark conditions in basic media. In both situations, Co0.8Ni0.2TiO3 exhibits the best performance and is proved to display high faradaic efficiency. A synergetic effect between Co and Ni is established, improving the physicochemical properties such as surface area and pore size distribution, besides affecting the donor density and the charge carrier separation. At higher Ni content, the materials exhibit behavior more similar to that of NiTiO3, which is a less suitable material for OER than CoTiO3.

5.
ACS Appl Mater Interfaces ; 9(21): 17932-17941, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28468493

RESUMO

A critical parameter for the implementation of standard high-efficiency photovoltaic absorber materials for photoelectrochemical water splitting is its proper protection from chemical corrosion while remaining transparent and highly conductive. Atomic layer deposited (ALD) TiO2 layers fulfill material requirements while conformally protecting the underlying photoabsorber. Nanoscale conductivity of ALD TiO2 protective layers on silicon-based photocathodes has been analyzed, proving that the conduction path is through the columnar crystalline structure of TiO2. Deposition temperature has been explored from 100 to 300 °C, and a temperature threshold is found to be mandatory for an efficient charge transfer, as a consequence of layer crystallization between 100 and 200 °C. Completely crystallized TiO2 is demonstrated to be mandatory for long-term stability, as seen in the 300 h continuous operation test.

6.
ACS Appl Mater Interfaces ; 7(12): 6898-908, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25775118

RESUMO

TiO2 anatase nanocrystals were prepared by solvothermal processing of Ti chloroalkoxide in oleic acid, in the presence of W chloroalkoxide, with W/Ti nominal atomic concentration (R(w)) ranging from 0.16 to 0.64. The as-prepared materials were heat-treated up to 500 °C for thermal stabilization and sensing device processing. For R(0.16), the as-prepared materials were constituted by an anatase core surface-modified by WO(x) monolayers. This structure persisted up to 500 °C, without any WO3 phase segregation. For R(w) up to R(0.64), the anatase core was initially wrapped by an amorphous WO(x) gel. Upon heat treatment, the WO(x) phase underwent structural reorganization, remaining amorphous up to 400 °C and forming tiny WO3 nanocrystals dispersed into the TiO2 host after heating at 500 °C, when part of tungsten also migrated into the TiO2 structure, resulting in structural and electrical modification of the anatase host. The ethanol sensing properties of the various materials were tested and compared with pure TiO2 and WO3 analogously prepared. They showed that even the simple surface modification of the TiO2 host resulted in a 3 orders of magnitude response improvement with respect to pure TiO2.

7.
ACS Appl Mater Interfaces ; 6(19): 16808-16, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25211288

RESUMO

We report for the first time the synthesis of monoclinic WO3 quantum dots. A solvothermal processing at 250 °C in oleic acid of W chloroalkoxide solutions was employed. It was shown that the bulk monoclinic crystallographic phase is the stable one even for the nanosized regime (mean size 4 nm). The nanocrystals were characterized by X-ray diffraction, High resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis, Fourier transform infrared and Raman spectroscopy. It was concluded that they were constituted by a core of monoclinic WO3, surface covered by unstable W(V) species, slowly oxidized upon standing in room conditions. The WO3 nanocrystals could be easily processed to prepare gas-sensing devices, without any phase transition up to at least 500 °C. The devices displayed remarkable response to both oxidizing (nitrogen dioxide) and reducing (ethanol) gases in concentrations ranging from 1 to 5 ppm and from 100 to 500 ppm, at low operating temperatures of 100 and 200 °C, respectively. The analysis of the electrical data showed that the nanocrystals were characterized by reduced surfaces, which enhanced both nitrogen dioxide adsorption and oxygen ionosorption, the latter resulting in enhanced ethanol decomposition kinetics.

8.
Nanoscale ; 4(23): 7517-24, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23100169

RESUMO

We present a novel approach for self-assembled growth of GaN quantum wires (QWRs) exhibiting strong confinement in two spatial dimensions. The GaN QWRs are formed by selective nucleation on {112[combining macron]0} (a-plane) facets formed at the six intersections of {11[combining macron]00} (m-plane) sidewalls of AlN/GaN nanowires used as a template. Based on microscopy observations we have developed a 3D model explaining the growth mechanism of QWRs. We show that the QWR formation is governed by self-limited pseudomorphic growth on the side facets of the nanowires (NWs). Quantum confinement in the QWRs is confirmed by the observation of narrow photoluminescence lines originating from individual QWRs with emission energies up to 4.4 eV. Time-resolved photoluminescence studies reveal a short decay time (~120 ps) of the QWR emission. Capping of the QWRs with AlN allows enhancement of the photoluminescence, which is blue-shifted due to compressive strain. The emission energies from single QWRs are modelled assuming a triangular cross-section resulting from self-limited growth on a-plane facets. Comparison with the experimental results yields an average QWR diameter of about 2.7 nm in agreement with structural characterization. The presented results open a new route towards controlled realization of one-dimensional semiconductor quantum structures with a high potential both for fundamental studies and for applications in electronics and in UV light generation.

9.
Nano Lett ; 12(5): 2199-204, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22506554

RESUMO

We demonstrate the nucleation of self-assembled, epitaxial GaN nanowires (NWs) on (111) single-crystalline diamond without using a catalyst or buffer layer. The NWs show an excellent crystalline quality of the wurtzite crystal structure with m-plane faceting, a low defect density, and axial growth along the c-axis with N-face polarity, as shown by aberration corrected annular bright-field scanning transmission electron microscopy. X-ray diffraction confirms single domain growth with an in-plane epitaxial relationship of (10 ̅10)(GaN) [parallel] (01 ̅1)(Diamond) as well as some biaxial tensile strain induced by thermal expansion mismatch. In photoluminescence, a strong and sharp excitonic emission reveals excellent optical properties superior to state-of-the-art GaN NWs on silicon substrates. In combination with the high-quality diamond/NW interface, confirmed by high-resolution transmission electron microscopy measurements, these results underline the potential of p-type diamond/n-type nitride heterojunctions for efficient UV optoelectronic devices.

10.
Nanoscale ; 4(5): 1620-6, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22286103

RESUMO

For good performance of photonic devices whose working principle is based on the enhancement of electromagnetic fields obtained by confining light into dielectric resonators with dimensions in the nanometre length scale, a detailed knowledge of the optical mode structure becomes essential. However, this information is usually lacking and can only be indirectly obtained by conventional spectroscopic techniques. Here we unraveled the influence of wire size, incident wavelength, degree of polarization and the presence of a substrate on the optical near fields generated by cavity modes of individual hexagonal ZnO nanowires by combining scanning near-field optical microscopy (SNOM) with electrodynamics calculations within the discrete dipole approximation (DDA). The near-field patterns obtained with very high spatial resolution, better than 50 nm, exhibit striking size and spatial-dispersion effects, which are well accounted for within DDA, using a wavevector-dependent dipolar interaction and considering the dielectric anisotropy of ZnO. Our results show that both SNOM and DDA simulations are powerful tools for the design of optoelectronic devices able to manipulate light at the nanoscale.

11.
Phys Chem Chem Phys ; 11(33): 7105-10, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19672516

RESUMO

Single-crystalline semiconductor metal oxide nanowires exhibit novel structural and electrical properties attributed to their reduced dimensions, well-defined geometry and the negligible presence of grain boundaries and dislocations in their inside. This favours direct chemical transduction mechanisms at their surfaces upon exposure to gas molecules, making them promising active device elements for a new generation of chemical sensors. Furthermore, metal oxide nanowires can be heated up to the optimal operating temperature for gas sensing applications with extremely low power consumption due to their small mass, giving rise to devices more efficient than their nanoparticle-based counterparts. Here, the current status of development of sensors based on individual metal oxide nanowires is surveyed, and the main technological challenges which act as bottleneck to their potential use in real applications are presented.

12.
Nanotechnology ; 20(24): 245608, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19471084

RESUMO

Germanium nanowires were synthesized using thermal chemical vapor deposition (CVD) and indium as a catalyst. The process parameter space for successful growth was studied. By optimizing the growth temperature and gas pressure, high aspect ratio germanium nanowires have been obtained. Scanning electron microscopy investigations indicate that the final diameter of the nanowires is strongly influenced by the growth temperature and the germane partial pressure. High resolution transmission electron microscopy reveals that nanowires grow either as high quality single crystalline, or with a high quality single-crystalline core and a concentric amorphous shell. The occurrence of these two morphologies is found to only depend on the wire diameter. Chemical analysis of the nanowire tip indicates the presence of indium, validating its role as a catalyst. Raman spectroscopy measurements reveal a higher incidence of core-shell structures for nanowires synthesized at 30 Torr and indicate the presence of tensile strain. These results are important towards obtaining high quality germanium nanowires without the use of gold as a catalyst, which is known to degrade the wires' electrical and optical properties.


Assuntos
Cristalização/métodos , Germânio/química , Índio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Catálise , Gases , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
Phys Chem Chem Phys ; 11(19): 3634-9, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19421473

RESUMO

Density functional theory (DFT) modelling of the alkane-SnO2 surface interaction correctly predicts the results of the chemoresistive alkane sensing tests, provided that the highly reduced nature of the SnO2 nanocrystal surface is properly inserted in the model.

14.
Nanotechnology ; 20(14): 145704, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19420534

RESUMO

We report on the effect of Mg doping on the properties of GaN nanowires grown by plasma assisted molecular beam epitaxy. The most significant feature is the presence of triple-twin domains, the density of which increases with increasing Mg concentration. The resulting high concentration of misplaced atoms gives rise to local changes in the crystal structure equivalent to the insertion of three non-relaxed zinc-blende (ZB) atomic cells, which result in quantum wells along the wurtzite (WZ) nanowire growth axis. High resolution electron energy loss spectra were obtained exactly on the twinned (zinc-blende) and wurtzite planes. These atomically resolved measurements, which allow us to identify modifications in the local density of states, revealed changes in the band to band electronic transition energy from 3.4 eV for wurtzite to 3.2 eV in the twinned lattice regions. These results are in good agreement with specific ab initio atomistic simulations and demonstrate that the redshift observed in previous photoluminescence analyses is directly related to the presence of these zinc-blende domains, opening up new possibilities for band-structure engineering.

15.
Langmuir ; 24(19): 11182-8, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18729490

RESUMO

Amorphous CdSe nanoparticles were prepared by a base-catalyzed room-temperature reaction between cadmium nitrate and selenourea, with dodecanethiol as a capping ligand. The nanoparticle size could be controlled from 1.9 to 3.6 nm by increasing the water concentration in the reaction. When the nanoparticles were heated in a pyridine suspension, excitonic peaks appeared in the initially featureless optical absorption spectra. By changing the suspension solvent and the capping ligand and its concentration, it was shown that the dynamic surface exchange between the ligand and pyridine controls the crystallization process. This phenomenon was interpreted as a surface rigidity effect imposed by the ligand, whose importance was separately evidenced on the dried nanoparticles by the evolution of X-ray diffraction patterns and Raman spectra. In particular, both techniques showed that a threshold temperature is needed before crystallization occurs, and such a threshold was related to ligand desorption. The surface effect was directly visualized by high-resolution transmission electron microscopy observations of the amorphous particles, where crystallization under the electron beam was observed to start by the formation of a crystalline nucleus in the nanoparticle interior and then to extend to the whole structure.

16.
Nanotechnology ; 17(22): 5577-83, 2006 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21727327

RESUMO

Two- and four-probe electrical measurements on individual tin oxide (SnO(2)) nanowires were performed to evaluate their conductivity and contact resistance. Electrical contacts between the nanowires and the microelectrodes were achieved with the help of an electron- and ion-beam-assisted direct-write nanolithography process. High contact resistance values and the nonlinear current-bias (I-V) characteristics of some of these devices observed in two-probe measurements can be explained by the existence of back-to-back Schottky barriers arising from the platinum-nanowire contacts. The nanoscale devices described herein were characterized using impedance spectroscopy, enabling the development of an equivalent circuit. The proposed methodology of nanocontacting and measurements can be easily applied to other nanowires and nanometre-sized materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...